Class: DisjointClassExpressionsAxiom

An axiom that defines a set of classes or class expressions as being mutually disjoint. Formally, there exists no instance that instantiates more that one of the union of classIds and classExpressions.

URI: obographs:DisjointClassExpressionsAxiom

classDiagram class DisjointClassExpressionsAxiom click DisjointClassExpressionsAxiom href "../DisjointClassExpressionsAxiom" Axiom <|-- DisjointClassExpressionsAxiom click Axiom href "../Axiom" DisjointClassExpressionsAxiom : classExpressions DisjointClassExpressionsAxiom --> "*" ExistentialRestrictionExpression : classExpressions click ExistentialRestrictionExpression href "../ExistentialRestrictionExpression" DisjointClassExpressionsAxiom : classIds DisjointClassExpressionsAxiom : meta DisjointClassExpressionsAxiom --> "0..1" Meta : meta click Meta href "../Meta" DisjointClassExpressionsAxiom : unionEquivalentTo DisjointClassExpressionsAxiom : unionEquivalentToExpression DisjointClassExpressionsAxiom --> "0..1" ExistentialRestrictionExpression : unionEquivalentToExpression click ExistentialRestrictionExpression href "../ExistentialRestrictionExpression"

Inheritance

  • Axiom

    • DisjointClassExpressionsAxiom

Slots

Name

Cardinality and Range

Description

Inheritance

classIds

*
OboIdentifierString

The set of named classes that are mutually disjoint

direct

classExpressions

*
ExistentialRestrictionExpression

The set of class expressions that are mutually disjoint

direct

unionEquivalentTo

0..1
OboIdentifierString

If present, this equates to an OWL DisjointUnion expression

direct

unionEquivalentToExpression

0..1
ExistentialRestrictionExpression

if present, this class expression is equivalent ot the (disjoint) union of th…

direct

meta

0..1
Meta

A collection of metadata about either an ontology (graph), an entity, or an a…

Axiom

Aliases

  • disjoint classes

Identifier and Mapping Information

Schema Source

  • from schema: https://github.com/geneontology/obographs

Mappings

Mapping Type

Mapped Value

self

obographs:DisjointClassExpressionsAxiom

native

obographs:DisjointClassExpressionsAxiom

LinkML Source

Direct

```yaml name: DisjointClassExpressionsAxiom description: An axiom that defines a set of classes or class expressions as being mutually disjoint. Formally, there exists no instance that instantiates more that one of the union of classIds and classExpressions. from_schema: https://github.com/geneontology/obographs aliases: - disjoint classes is_a: Axiom attributes: classIds: name: classIds description: The set of named classes that are mutually disjoint. from_schema: https://github.com/geneontology/obographs rank: 1000 domain_of: - DisjointClassExpressionsAxiom range: OboIdentifierString multivalued: true classExpressions: name: classExpressions description: The set of class expressions that are mutually disjoint. comments: - currently restricted to existential restrictions (some values from) from_schema: https://github.com/geneontology/obographs rank: 1000 domain_of: - DisjointClassExpressionsAxiom range: ExistentialRestrictionExpression multivalued: true unionEquivalentTo: name: unionEquivalentTo description: If present, this equates to an OWL DisjointUnion expression. from_schema: https://github.com/geneontology/obographs rank: 1000 domain_of: - DisjointClassExpressionsAxiom range: OboIdentifierString unionEquivalentToExpression: name: unionEquivalentToExpression description: if present, this class expression is equivalent ot the (disjoint) union of the classIds and classExpressions. from_schema: https://github.com/geneontology/obographs rank: 1000 domain_of: - DisjointClassExpressionsAxiom range: ExistentialRestrictionExpression
</details>

### Induced

<details>
```yaml
name: DisjointClassExpressionsAxiom
description: An axiom that defines a set of classes or class expressions as being
  mutually disjoint. Formally, there exists no instance that instantiates more that
  one of the union of classIds and classExpressions.
from_schema: https://github.com/geneontology/obographs
aliases:
- disjoint classes
is_a: Axiom
attributes:
  classIds:
    name: classIds
    description: The set of named classes that are mutually disjoint.
    from_schema: https://github.com/geneontology/obographs
    rank: 1000
    alias: classIds
    owner: DisjointClassExpressionsAxiom
    domain_of:
    - DisjointClassExpressionsAxiom
    range: OboIdentifierString
    multivalued: true
  classExpressions:
    name: classExpressions
    description: The set of class expressions that are mutually disjoint.
    comments:
    - currently restricted to existential restrictions (some values from)
    from_schema: https://github.com/geneontology/obographs
    rank: 1000
    alias: classExpressions
    owner: DisjointClassExpressionsAxiom
    domain_of:
    - DisjointClassExpressionsAxiom
    range: ExistentialRestrictionExpression
    multivalued: true
  unionEquivalentTo:
    name: unionEquivalentTo
    description: If present, this equates to an OWL DisjointUnion expression.
    from_schema: https://github.com/geneontology/obographs
    rank: 1000
    alias: unionEquivalentTo
    owner: DisjointClassExpressionsAxiom
    domain_of:
    - DisjointClassExpressionsAxiom
    range: OboIdentifierString
  unionEquivalentToExpression:
    name: unionEquivalentToExpression
    description: if present, this class expression is equivalent ot the (disjoint)
      union of the classIds and classExpressions.
    from_schema: https://github.com/geneontology/obographs
    rank: 1000
    alias: unionEquivalentToExpression
    owner: DisjointClassExpressionsAxiom
    domain_of:
    - DisjointClassExpressionsAxiom
    range: ExistentialRestrictionExpression
  meta:
    name: meta
    description: A collection of metadata about either an ontology (graph), an entity,
      or an axiom
    from_schema: https://github.com/geneontology/obographs
    aliases:
    - annotations
    rank: 1000
    alias: meta
    owner: DisjointClassExpressionsAxiom
    domain_of:
    - GraphDocument
    - Graph
    - Node
    - Edge
    - PropertyValue
    - Axiom
    range: Meta